Exponential or Power Distance-Decay for Commuting? An Alternative Specification
نویسندگان
چکیده
منابع مشابه
Skew-t distribution is an appropriate alternative for the weighted exponential distribution
In this manuscript first a brief introduction to the Skew-t and Weighted exponential distributions is considered and some of their important properties will be studied. Then we will show that the Skew-t distribution is prefered to the Weighted exponential distribution in fitting by using the real data. Finally we will prove our claim by using the simulation method.
متن کاملWhich distance-decay function for migration and which one for commuting? A case study of Slovenia
The volume of social interactions like migration and commuting between two locations depends significantly on the distance between them. In the paper, we analysed the shape and parameters of several distance-decay functions for commuting and for migration flows, respectively. The analysis was performed for inter-municipal interactions in Slovenia in 2010–2011. The functions considered were powe...
متن کاملExponential decay for the fragmentation or cell-division equation
We consider a classical integro-differential equation that arises in various applications as a model for cell-division or fragmentation. In biology, it describes the evolution of the density of cells that grow and divide. We prove the existence of a stable steady dynamics (first positive eigenvector) under general assumptions in the variable coefficients case. We also prove the exponential conv...
متن کاملNew statistic for financial return distributions: power-law or exponential?
We introduce a new statistical tool (the TP-statistic and TE-statistic) designed specifically to compare the behavior of the sample tail of distributions with power-law and exponential tails as a function of the lower threshold u. One important property of these statistics is that they converge to zero for power laws or for exponentials correspondingly, regardless of the value of the exponent o...
متن کاملDomination with exponential decay
Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environment and Planning A: Economy and Space
سال: 2009
ISSN: 0308-518X,1472-3409
DOI: 10.1068/a39369